Effects of solar radiation and wind speed on metabolic heat production by two mammals with contrasting coat colours.
نویسندگان
چکیده
We report the first empirical data describing the interactive effects of simultaneous changes in irradiance and convection on energy expenditure by live mammals. Whole-animal rates of solar heat gain and convective heat loss were measured for representatives of two ground squirrel species, Spermophilus lateralis and Spermophilus saturatus, that contrast in coloration. Radiative heat gain was quantified as the decrease in metabolic heat production caused by the animal's exposure to simulated solar radiation. Changes in convective heat loss were quantified as the variation in metabolic heat production caused by changes in wind speed. For both species, exposure to 780 W m-2 of simulated solar radiation significantly reduced metabolic heat production at all wind speeds measured. Reductions were greatest at lower wind speeds, reaching 42% in S. lateralis and 29% in S. saturatus. Solar heat gain, expressed per unit body surface area, did not differ significantly between the two species. This heat gain equalled 14-21% of the radiant energy intercepted by S. lateralis and 18-22% of that intercepted by S. saturatus. Body resistance, an index of animal insulation, declined by only 10% in S. saturatus and 13% in S. lateralis as wind speed increased from 0.5 to 4.0 ms-1. These data demonstrate that solar heat gain can be essentially constant, despite marked differences in animal coloration, and that variable exposure to wind and sunlight can have important consequences for both thermoregulatory stress experienced by animals and their patterns of energy allocation.
منابع مشابه
Modeling, Optimization and exergoeconomic analysis a multiple energy production system based on solar Energy, Wind Energy and Ocean Thermal Energy Conversion (OTEC) in the onshore region
In the present study, investigated an energy production system using three types of renewable energy: solar, wind and ocean thermal energy with climatic conditions and close to areas with high potential for the OTEC system, Has a good position in terms of wind speed and solar radiation, used them as energy sources. The proposed system is designed and evaluated based on the total daily electrici...
متن کاملEffect of wind and solar radiation on metabolic heat production in a small desert rodent, Spermophilus tereticaudus.
To understand better how complex interactions between environmental variables affect the energy balance of small diurnal animals, we studied the effects of the absence and presence of 950 W m(-)(2) simulated solar radiation combined with wind speeds ranging from 0. 25 to 1.00 m s(-)(1) on the metabolic rate and body temperature of the round-tailed ground squirrel Spermophilus tereticaudus. As w...
متن کاملEffects of complex radiative and convective environments on the thermal biology of the white-crowned sparrow (Zonotrichia leucophrys gambelii).
The energy budgets of small endotherms are profoundly affected by characteristics of the physical environment such as wind speed, air temperature and solar radiation. Among these, solar radiation represents a potentially very large heat load to small animals and may have an important influence on their thermoregulatory metabolism and heat balance. In this investigation, we examined the interact...
متن کاملEconomic assessment of renewable power generation based on wind speed and solar radiation in urban regions
Economic evaluation of 12 MW grid-connected wind farms and PV power plants in two regions in Northern Cyprus for electricity generation was investigated. The wind speed, sunshine duration, and solar global radiation characteristics were analyzed using monthly data collected over 17 years (2000-2016) for Girne and nine years (2008-2016) for Lefkoşa, which were measured at various heights. The re...
متن کاملEffects of altitude, ambient temperature and solar radiation on fasting heat production in yellow cattle (Bos taurus).
Growing yellow cattle (Bos taurus, n 30, 1.0-3.5 years old and 75-240 kg) from their native altitude (2000-2800 m) were used to evaluate the effects of altitude, ambient temperature (Ta) and solar radiation on the basal energy metabolism in this large mammal. Fasting heat production (FHP) was measured at altitudes of 2260, 3250 and 4270 m on the Tibetan plateau both in the summer and winter res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 198 Pt 7 شماره
صفحات -
تاریخ انتشار 1995